organic compounds

Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

S—H····S hydrogen-bond chain in thiosalicylic acid

Thomas Steiner

Institut für Chemie – Kristallographie, Freie Universität Berlin, Takustrasse 6, D-14195 Berlin, Germany Correspondence e-mail: steiner@chemie.fu-berlin.de

Received 25 January 2000 Accepted 6 April 2000

In crystalline thiosalicylic acid (2-mercaptobenzoic acid), $C_7H_6O_2S$, the carboxylic acid groups form hydrogen-bonded dimers, whereas the S-H groups form an infinite S-H···S-H···S-H···S-H hydrogen-bond chain, with an S···S distance of 3.986 (3) Å.

Comment

Although S-H is a classical hydrogen-bonding functional group, there is surprisingly little structural information on S- $H \cdots X$ hydrogen bonds. Even for the most common variant, S- $H \cdots O$, the published material is scarce (Allen *et al.*, 1997). For all the other cases, like S- $H \cdots S$, S- $H \cdots N$, S- $H \cdots Cl^-$, S- $H \cdots Ph$ *etc.*, there are only a handful of relevant crystal structures (surveyed by Desiraju & Steiner, 1999; see also Steiner, 1998; Rozenberg *et al.*, 1999). In this context, the crystal structure of thiosalicylic acid, (I), was determined. Initially, it was unclear which kind of hydrogen bond the S-H group would form (inter- or intramolecular; S- $H \cdots O$ or S- $H \cdots S$).

The molecular structure of (I) in the crystal is shown in Fig. 1. The mercapto and carboxyl groups have normal geometries [C2-S1 = 1.766 (3), S1-H1 = 1.30 (5) Å and $C2-S1-H1 = 95 (2)^\circ$; O1=C7 = 1.219 (4) and O2-C7 = 1.306 (4) Å]. No intramolecular S-H···O hydrogen bond is formed, but the S-H group is oriented away from the carboxylic acid moiety [torsion angle $C1-C2-S1-H1 = 178 (2)^\circ$]. This contrasts with the oxygen analogue salicylic acid, where an intramolecular O-H···O=C hydrogen bond is formed with O···O = 2.62 Å (Sundaralingam & Jensen, 1965). The molecule of (I) is significantly non-planar, with the carboxylic acid group rotated 10.0 (2)° out of the aromatic plane. This way, the O1 atom is displaced by 0.131 (5) Å from the ring plane. Atom S1 is displaced from that plane in the opposite direction by -0.016 (4) Å. The angle C1-C2-S1 is

The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level.

widened to 122.1 (2)°. These distortions indicate significant steric repulsion between O1 and S1 [distance 2.752 (3) Å]. In order to understand why no intramolecular hydrogen bond is formed, one must consider that $S \cdots O$ distances in $S - H \cdots O$ hydrogen bonds have only been found longer than 3.2 Å (Desiraju & Steiner, 1999). A hypothetical $S - H \cdots O$ interaction with an $S \cdots O$ separation of around 2.75 Å would (if relatively linear) have an $H \cdots O$ distance so short that it is deep in the repulsive regime of the hydrogen-bond potential.

The hydrogen-bond scheme that is actually formed in (I) is shown in Fig. 2 and geometrical parameters are listed in Table 1. The carboxylic acid groups form dimers with standard geometry $[O \cdots O = 2.657 (4) \text{ Å}]$. The S-H groups form an infinite S-H \cdots S-H \cdots S-H hydrogen-bond chain in the direction of the y axis, with distances S \cdots S = 3.986 (3) Å and H \cdots S = 2.72 (5) Å. Since the C-S-H group has refined almost to typical neutron diffraction geometry [*e.g.* S-H = 1.338 (2) Å and C-S-H = 96.9 (2)° in the neutron diffraction

Figure 2

Section of the crystal packing illustrating the system of $O-H\cdots O$ and $S-H\cdots S$ hydrogen bonds. The $S-H\cdots S$ chain runs in the direction of the *y* axis, which is horizontal here. The projection plane is rotated by 10° around the *x* axis from the orientation shown.

study of N-acetyl-L-cysteine; Takusagawa et al., 1981], the geometry in Table 1 is already realistic and normalization is unnecessary. The distances are similar to those in other S- $H \cdots S$ hydrogen bonds between poorly activated S-H groups, like in thiols and thiophenols (they can be considerably shorter between more polar S-H groups). The acceptor directionality is described by the angle $H \cdot \cdot \cdot S1 - C2$ of 76.1 (9)° and the torsion angle $H \cdot \cdot \cdot S1 - C2 - C1$ of $-81 (1)^\circ$, showing that the hydrogen bonds are directed at the 'sides' of the C–S–H acceptors. Two weak C–H $\cdot \cdot \cdot$ O hydrogen bonds are also formed (Table 1).

Experimental

Thiosalicylic acid, (I), was obtained from Aldrich and was recrystallized from MeOH by slow evaporation of the solvent.

Crystal data

$C_7H_6O_2S$	$D_x = 1.489 \text{ Mg m}^{-3}$
$M_r = 154.18$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 34
$a = 7.856 (7) \text{ Å}^{17}$	reflections
b = 5.963 (5) Å	$\theta = 7.2 - 16.2^{\circ}$
c = 14.940 (11) Å	$\mu = 0.396 \text{ mm}^{-1}$
$\beta = 100.69(7)^{\circ}$	T = 293 (2) K
$V = 687.7 (10) \text{ Å}^3$	Plate, yellow
Z = 4	$0.25 \times 0.20 \times 0.03 \text{ mm}$
Data collection	
Stoe four-circle diffractometer	$h = -10 \rightarrow 7$
ω scans	$k = -7 \rightarrow 7$
1692 measured reflections	$l = -19 \rightarrow 14$
1580 independent reflections	3 standard reflections
1188 reflections with $I > 2\sigma(I)$	frequency: 90 min
$R_{\rm int} = 0.043$	intensity decay: 5%
$\theta_{\rm max} = 27.50^{\circ}$	<u>j</u>

Table 1

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O2-H2\cdots O1^i$	0.91 (6)	1.75 (6)	2.657 (4)	174 (5)
$S1-H1\cdots S1^{ii}$	1.30 (5)	2.72 (5)	3.986 (3)	164 (3)
C5−H5···O1 ⁱⁱⁱ	0.93	2.66	3.584 (5)	171
$C6-H6\cdots O2^{iv}$	0.93	2.62	3.362 (5)	137

Symmetry codes: (i) 1 - x, -1 - y, -z; (ii) $1 - x, \frac{1}{2} + y, \frac{1}{2} - z$; (iii) x - 1, y, z; (iv) -x, -1 - v, -z.

Refinement

Refinement on F^2	w = 1
$R[F^2 > 2\sigma(F^2)] = 0.057$	+ (
$wR(F^2) = 0.171$	wh
S = 1.026	$(\Delta \sigma)$
1580 reflections	$\Delta \rho_{\rm ma}$
103 parameters	$\Delta \rho_{\rm mi}$
H atoms treated by a mixture of	
independent and constrained	
refinement	

 $1/[\sigma^2(F_o^2) + (0.1042P)^2]$ 0.1754P] here $P = (F_0^2 + 2F_c^2)/3$ $)_{\rm max} < 0.001$ $_{ax} = 0.53 \text{ e} \text{ Å}^{-3}$ $_{\rm n} = -0.30 \ {\rm e} \ {\rm \AA}^{-3}$

H atoms bonded to C atoms were treated in the default riding model; the H atoms bonded to O2 and S1 were located in difference Fourier calculations and refined isotropically. All H-atom displacement parameters refined to realistic values [H atoms bonded to C: $0.056-0.072 \text{ Å}^2$; H atoms bonded to O and S: 0.11 (1) and 0.09 (1) Å^2 , respectively].

Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1990) and ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Dr D. Lentz is thanked for providing access to the singlecrystal diffractometer.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DE1138). Services for accessing these data are described at the back of the journal.

References

Allen, F. H., Bird, C. M., Rowland, R. S. & Raithby, P. R. (1997). Acta Cryst. B53. 696-701.

Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 253-266. Oxford University Press.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Rozenberg, M. S., Nishio, T. & Steiner, T. (1999). New J. Chem. 23, 585-586.

Sheldrick, G. M. (1985). SHELXS86. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Spek, A. L. (1990). Acta Cryst. A45, C-34.

Steiner, T. (1998). Acta Cryst. B54, 456-463.

Sundaralingam, M. & Jensen, L. H. (1965). Acta Cryst. 18, 1053-1058.

Takusagawa, F., Koetzle, T. F., Kou, W. W. H. & Parthasarathy, R. (1981). Acta Cryst. B37, 1591-1596.